

Transitioning from Distsrv to
Automated Deployment Engine 2.0

CA Unified Infrastructure Management

Developer White Paper

NOTICE: ADE callbacks are subject to change without notice or formal deprecation. CA Confidential 2
Changes will be reflected in the documentation for each release.

Document Change History

Date Version Change

September 2014 Version 2.0 Initial draft of document for ADE 2.0, released with UIM
Server 8.0.

November 2014 Version 2.0 Notice added.

NOTICE

ADE CALLBACKS ARE SUBJECT TO CHANGE.

The callbacks are very low level APIs that are primarily used internally by UIM Server. Future
changes to callbacks may consist of implementation changes, including changes to the signature or
the name of the callback. This will require that you modify scripts or other custom tools based on
the callbacks.

CA will strive to minimize such impacts but reserves the right to do so, without advanced notice or
formal deprecation periods. Changes to callbacks will be reflected in the documentation for each
release.

NOTICE: ADE callbacks are subject to change without notice or formal deprecation. CA Confidential 3
Changes will be reflected in the documentation for each release.

Table of Contents
Overview 4

Distsrv and ADE ... 4
ADE v2.0 ... 5
About this Document... 4

Functional Comparison 6

Callback Transition 7

Automated Deployment Engine Callbacks 8

Archive Management .. 8
archive_backup(name,version) .. 8
archive_delete(name,version).. 8
archive_list(name,version) ... 9
archive_get_start(name,version,buffer_size) .. 10
archive_get_next(id) .. 11
archive_get_end(id) ... 11
archive_put_start(name,version,file) ... 12
archive_put_next(id) .. 13
archive_put_end(id) ... 13

Deploying Packages ... 14
deploy_probe ... 14
submit_job .. 15

Retrieving Status .. 16
get_job_ids ... 16
get_status ... 16

ADE Archive Sync 18

add_package_sync_rule(name,version,rule_type) .. 18
delete_package_sync_rule(name) ... 18
list_rules(name) .. 19
set_package_sync_master(name) .. 19
unset_package_master_sync ... 19
refresh_rules .. 19

NOTICE: ADE callbacks are subject to change without notice or formal deprecation. CA Confidential 4
Changes will be reflected in the documentation for each release.

Overview

About this Document
This white paper intended to help UIM partners and administrators who have
used distsrv callbacks in scripts or applications begin transitioning to ADE.

NOTICE

ADE CALLBACKS ARE SUBJECT TO CHANGE.

The callbacks are very low level APIs that are primarily used internally by
UIM Server. Future changes to callbacks may consist of implementation
changes, including changes to the signature or the name of the callback. This
will require that you modify scripts or other custom tools based on the
callbacks.

CA will strive to minimize such impacts but reserves the right to do so,
without advanced notice or formal deprecation periods. Changes to
callbacks will be reflected in the documentation for each release.

Distsrv and ADE
Distributing the UIM software throughout your infrastructure is an important
aspect of the Unified Infrastructure Management solution. Prior to the release
of UIM Server 8.0:

■ The distrv probe maintained distributable packages, licenses, and alarm
console maps, and transferred probe packages to or from robots.

■ The automated_deployment_engine (ADE) probe enabled you to deploy
robots in bulk.

With the release of UIM Server 8.0, the tasks performed by distsrv begin
transitioning to the automated_deployment_engine (ADE) probe.

NOTICE: ADE callbacks are subject to change without notice or formal deprecation. CA Confidential 5
Changes will be reflected in the documentation for each release.

ADE v2.0
ADE v2.0 is a complete redesign of the distsrv probe in java code, designed with
extensibility and scalability in mind. The main benefit of this release is that Admin
Console uses ADE instead of distsrv. ADE 2.0 also provides improvements in:

■ Performance

‒ ADE is much faster than distsrv (on the order of 3 to 5 times faster for
most operations).

‒ The number of concurrent tasks that ADE can perform will scale
according to the CPU resource provided to it. ADE is designed to
effectively take advantage of CPU and memory resources in order to
perform tasks quickly and efficiently.

■ Extensibility

‒ Because ADE was written from the ground up to replace the
functionality and services provide by distsrv, the design can be more
easily extended and enhanced for future business needs.

NOTICE: ADE callbacks are subject to change without notice or formal deprecation. CA Confidential 6
Changes will be reflected in the documentation for each release.

Functional Comparison

Functionality ADE Distsrv

Parallel
Deployment

The number of probes that can be
deployed concurrently is based on the
number of threads ADE has available.
ADE automatically deploys probes
single-threaded to a single target and
multi-threaded to multiple targets.

All packages are deployed serially
regardless of the number of targets
specified.

Archive
Management

ADE manages an in-memory cache of
the archive at any given time. Any
time probes are added and removed
from the archive by using callbacks,
the cache is updated. This allows for
quick lookups and quick retrievals.

During startup, distsrv unzips all
available zip packages in the archive
and stores the information about them.
For any further lookups it has to unzip
the package and update the stored
information.

License
Validation

ADE does not have the licensing
functionality built it. In a future
release, licensing will be moved to a
component outside of ADE. This may
be the hub or may remain in distsrv.

Licenses are managed and validated by
distsrv and the hub.

Resource
Management

ADE does on-demand zip unpacking,
keeps the unpacked the files available
on the file system. These resources
are available to any and all future
distributions. They are not limited to
one job or one task, as many readers
can access a file at a time. It does not
unzip any package that it does not
need.

Distsrv does on-demand unzip
unpacking, but does not keep the
resource for later. Partly due to its
single threaded nature, distsrv uses a
resource and then deletes it after
distribution. This does not allow for any
sharing between jobs and forces an
unpack for each and every job.

Size ~8.0 MB ~3.0 MB

Package
Forwarding

As of most recent ADE 2.0 build, this is
not provided. Plans are slated for UIM
Server 8.0.

Distsrv does package forwarding
according to a set of rules. It tends to
take up a lot of bandwidth and has
been known to be under performant.

NOTICE: ADE callbacks are subject to change without notice or formal deprecation. CA Confidential 7
Changes will be reflected in the documentation for each release.

Callback Transition
The following table outlines the callback equivalents between ADE and distsrv. For further
understanding and greater detail of the ADE callbacks, see the “Automated Deployment Engine
Callbacks” section.

Functionality ADE Distsrv

Create archive package backup archive_backup archive_backup

Delete archive package archive_delete archive_delete

Download archive package archive_get_start
archive_get_next
archive_get_end

archive_get_start
archive_get_next
archive_get_end

List contents of archive archive_list archive_list

Add package to archive archive_put_start
archive_put_next
archive_put_end

archive_put_start
archive_put_next
archive_put_end

Deploy single archive package deploy_probe job_add

Retrieve job status get_status job_list or job_status

Cancel a job cancel_job job_cancel

Multi-package deployment submit_job job_add(multiple calls)

NOTICE: ADE callbacks are subject to change without notice or formal deprecation. CA Confidential 8
Changes will be reflected in the documentation for each release.

Automated Deployment Engine Callbacks

Archive Management

archive_backup(name,version)

Creates a backup of the specified archive with name and version.

Input
Parameter Type Required Description

name String Yes Name of the package as present in “archive_list” callback.

version String Yes Version of the package as present in “archive_list” callback.

Error Cause

NimException.E_ERROR Error occurred while attempting to create backup.

NimException.E_INVAL Specified name or version does not match an entry in the archive.

archive_delete(name,version)

Deletes the archive with the specified name and version from the archive cache and file system.

Input
Parameter Type Required Description

name String Yes Name of the package as present in “archive_list” callback.

version String Yes Version of the package as present in “archive_list” callback.

Error Cause

NimException.E_INVAL Invalid name or version specified. The name and version parameters cannot
be empty or null.

NimException.E_ERROR Error occurred while attempting to delete specified archive package.

NOTICE: ADE callbacks are subject to change without notice or formal deprecation. CA Confidential 9
Changes will be reflected in the documentation for each release.

archive_list(name,version)

Lists the contents of the ADE archive cache. This is equivalent to distsrv archive_list with the distsrv
detail field set to the highest setting (integer 3).

Input
Parameter Type Required Description

name String No Name of the package to provide information for.

version String No Version of the package to provide information for.

The return PDS for this callback contains an array of PDSs under the key “entry” with each representing
an entry in the archive. For the sake of simplicity, the table below covers the contents of each archive
entry PDS.

Return Value Type Description

name String Name as it appears in infrastructure manager or admin
console.

description String Formal name of the package or a functional description.

group String Functional group the package belongs to.

author String Creator or maintainer of this package.

copyright String Date of copyright.

license_required String Indication of whether or not a license is required to deploy the
package.

version String Version of the package as determined by the author.

date String Date the package was created.

build String Build number of the package.

file_name String Absolute path to the archive zip on the filesystem.

NOTICE: ADE callbacks are subject to change without notice or formal deprecation. CA Confidential 10
Changes will be reflected in the documentation for each release.

archive_get_start(name,version,buffer_size)

Starts the transaction for an archive download.

Input
Parameter Type Required Description

name

String Yes Name of the package as present in “archive_list” callback.

version String No Version of the package as present in “archive_list” callback.
No version specified is equivalent to highest version.

buffer_size Integer No Size of the buffer to store downloaded bytes. This is used to
receive the file in chunks.

Return Value Type Description

file_content Byte First chunk of data from the archive package.

id String ID is used for the initial call to archive_get_next. Subsequent
calls to archive_get_next return an updated id.

read Integer Represents the amount of data read into the file_content
buffer.

Error Cause

NimException.E_ERROR Invalid checksum generated for package. Unable to generate checksum for
package specified. Unable to read from specified package.

NimException.E_NOENT File specified does not exist.

NimException.E_INVAL Arguments provided are invalid.

NOTICE: ADE callbacks are subject to change without notice or formal deprecation. CA Confidential 11
Changes will be reflected in the documentation for each release.

archive_get_next(id)

Continues the transaction for an archive download.

Input
Parameter Type Required Description

id String Yes ID is used by ADE to continue the archive download
transaction.

Return Value Type Description

file_content Byte Next chunk of data in the archive package being read.

id String Updated ID for the archive download transaction.

read Integer Amount of data read into the file_content buffer.

Error Cause

NimException.E_ERROR Unable to read data from the file specified by the id.

NimException.E_INVAL Id provided was invalid.

archive_get_end(id)

Ends the transaction for an archive download.

Input
Parameter Type Required Description

id String Yes The is used by ADE to identify and end the transaction.

Return Value Type Description

id String Final ID associated with the transaction.

read Integer The total amount of bytes read from the file.

NOTICE: ADE callbacks are subject to change without notice or formal deprecation. CA Confidential 12
Changes will be reflected in the documentation for each release.

archive_put_start(name,version,file)

Starts the transaction for an archive addition.

Input
Parameter Type Required Description

name String Yes Name of the package to be uploaded.

version String Yes Version of the package to be uploaded. In the past, distsrv
used this field, but currently ADE only uses it when naming
the temporary file.

file String No Currently this field does nothing. ADE provides the filename
transparently.

file_content Byte No The initial chunk of data to be uploaded. This field does not
need to be specified in the initial call.

Return Value Type Description

id String The ID associated with the upload transaction. Required to
call “archive_put_next”.

written Integer Amount of data written out to the temporary file during this
callback. This is only specified if “file_content” was specified
in the initial call.

Error Cause

NimException.E_ERROR Unable to write data to package file. Could not find specified package file.

NimException.E_INVAL Arguments provided are invalid. Arguments “name” and “version” cannot
be empty or null. Version provided does not match the standard format.
Specified file argument is not relative to the archive directory.

NOTICE: ADE callbacks are subject to change without notice or formal deprecation. CA Confidential 13
Changes will be reflected in the documentation for each release.

archive_put_next(id)

Continues the transaction for an archive addition.

Input
Parameter Type Required Description

id String Yes Identifies the upload transaction.

Return Value Type Description

id String ID associated with the next phase of the upload. A new ID is
returned each time this callback is called.

written Integer Number of bytes written during the call to
“archive_put_next”.

Error Cause

NimException.E_INVAL Specified “id” is not valid.

NimException.E_ERROR File specified by “id” does not exist. Unable to write to file specified by
“id”. Argument “file_content” contains no data.

archive_put_end(id)

Ends the transaction for an archive addition.

Input
Parameter Type Required Description

id String Yes Identifies the upload transaction.

Return Value Type Description

file String Absolute path to the new archive directory on the
filesystem.

NOTICE: ADE callbacks are subject to change without notice or formal deprecation. CA Confidential 14
Changes will be reflected in the documentation for each release.

Deploying Packages

deploy_probe

Provides functionality similar to the “job_add” callback in distsrv. This will deploy a single package to a
single robot.

Input
Parameter Type Required Description

package String Yes Name of the package to be deployed.

version String No Version of the package to be deployed. If no version is
specified ADE selects the highest one.

robot String Yes The target for the deployment. This should be the nimbus
address for a robot.

update String No Either “0” for do not update the package if exists or “1” for
update the package regardless of if it exists. Default is “1”.

startAt String No Currently provides not additional functionality.

jobname String No Name of the job. Currently supports up to 255 characters.

job_description String No Description of the job. Currently supports up to 255
characters.

Return Value Type Description

JobID String UUID identifier of the job created by ADE.

NOTICE: ADE callbacks are subject to change without notice or formal deprecation. CA Confidential 15
Changes will be reflected in the documentation for each release.

submit_job

Provides a way to specify a multi-package multi-robot job. This callback is also used to deploy robots,
but is not covered in this whitepaper. To deploy more than one package to a single robot or to deploy
multiple packages to multiple robots a table of PDSs with the key “probes” must be constructed. The
parameters specified below the key “probes” are for each PDS within the table.

Input
Parameter Type Required Description

probes PDS
(table)

Yes Table containing an entry for each PDS specified for the job.

An entry in “probes” table. All entries are retrieved with getTablePDSs(“probes”).

Input
Parameter Type Required Description

package String Yes Name of the package to deploy.

version String No Version of the package to deploy. If no version is provided,
ADE selects the highest.

robot String Yes Target robot for the deployment.

update String No Either “0” for do not update the package if exists or “1” for
update the package regardless of if it exists. Default is “1”.

startAt String No Currently provides no additional functionality.

Note: The jobname and job_description keys can be provided at the same level as the probez key.

Return Value Type Description

JobID String UUID identifier of the job created by ADE. This is used by
the “get_status” callback to retrieve the status of a job.

NOTICE: ADE callbacks are subject to change without notice or formal deprecation. CA Confidential 16
Changes will be reflected in the documentation for each release.

Retrieving Status

get_job_ids

Returns an array of Strings with each one representing aunique JobID that is currently being tracked by
ADE.

Return Value Type Description

JobIDs PDS(table) Array containing all the JobIDs being tracked by ADE.

get_status

Retrieves the compiled status for a job created by ADE.

Input
Parameter Type Required Description

JobID String Yes UUID identifier of the job created by ADE.

The PDS returned by “get_status” contains a multitude of information about the jobs and each task
contained within. The PDS specified by the key “StatusTable” contains an entry PDS for each task within
the job. Each PDS is keyed using the following format “domain/hub/robot/probe” where the domain,
hub, and robot are the target nimbus address and the probe is one of the specified packages for
deployment. It is up to the caller to know the target(s) and package(s) they would like to retrieve status
for. The parameters specified below “StatusTable” are a part of each individual entry in the table.

Return Value Type Description

JobID String UUID identifier associated with the job.

JobName String Name of the job as specified by the user.

JobDescription String Description of the job as provided by the user.

JobStatus String Current status of the job. This is selected from the following
values: QUEUED, RUNNING, SUCCESS, FAILED, INCOMPLETE

StartTime Long
Integer

Millisecond start time value when the job was added.

EndTime Long
Integer

Millisecond end time value when all the tasks for the job
have completed.

StatusTable PDS Contains an entry for each task within the job. The key is
“/domain/hub/robot/package”.

NOTICE: ADE callbacks are subject to change without notice or formal deprecation. CA Confidential 17
Changes will be reflected in the documentation for each release.

An Entry in “StatusTable”. Each entry is retrieved by key.

Return Value Type Description

JobID String UUID of the job that the task is associated with.

TaskId Integer An integer identifier for the task.

Status String Status of the task. It will be selected from the following:
QUEUED, RUNNING, SUCCESS, FAILED, or INCOMPLETE.

Host String Target of the distribution. This will be either a
hostname/ip or a NimBUS address

Description String Description of the error state of the package. It will be
empty string if there are no exceptions.

Package String Name of the package being deployed.

Version String Version of the package being deployed.

Type String Specifies the type of job. This is selected from “Robot”
or “Probe”.

NOTICE: ADE callbacks are subject to change without notice or formal deprecation. CA Confidential 18
Changes will be reflected in the documentation for each release.

ADE Archive Sync
Important! This feature is not available in UIM Server 8.0. The proposed API is detailed in this section.
Some of the calls exist, but the implementation is incomplete. This feature will be available in UIM
Server 8.1.

ADE Archive sync is a redesigned version of the distsrv package forwarding functionality. This
functionality is designed with simplicity in mind, but provides a way to setup granular synchronization
rules between ADE archives on different hubs. Archive sync is driven by rules created at a “parent” ADE.
These rules are used by “child” ADE probes to sync their archives to their assigned parent. The parent-
child relationship is established through the callback “set_package_sync_master”

add_package_sync_rule(name,version,rule_type)

Creates a new archive sync rule for this ADE to distribute to its children. When called on a parent ADE
probe, any child ADE probes that have called “set_package_sync_master” check to the contents of their
archive based on the specified rule. If a child ADE probe(s) does not have a package specified by a rule it
will contact the parent ADE probe and download it to archive underneath the child ADE probe.

Input
Parameter Type Required Description

name String Yes Name of the package to create a rule for.

version String No Version of the rule to apply the package for. If no verison is
supplied then the highest is used.

rule_type String Yes Defines how the sync rule behaves. The following types are
allowed: ALL, UPDATE, and SPECIFIC.

delete_package_sync_rule(name)

Deletes the rule for the specific package.

Input
Parameter Type Required Description

name String Yes Name of the package to delete a rule for.

NOTICE: ADE callbacks are subject to change without notice or formal deprecation. CA Confidential 19
Changes will be reflected in the documentation for each release.

list_rules(name)

List all the rules available for this ADE probe.

Input
Parameter Type Required Description

name String No Name of the package to list a specific rule for. No name
specified means all rules.

The PDS returned by “list_rules” contains an array of PDS entries retrieved using the key “rules”. For the
sake of simplicity, the table below covers one of those entries.

Return Value Type Description

package String Name of the packge the rule applies to

rule_src String Nimbus address where the rule was created from.

rule_type String Type of rule as specified by the add_package_sync_rule
callback.

version String Version of the package the rule applies to.

set_package_sync_master(name)

Establishes a parent-child relationship from the called ADE probe to the ADE specified using the “robot”
parameter. When this callback is called, the called ADE probe downloads the set of rules that are on the
parent ADE probe. It also begins the process of the initial sync with the parent to make sure the
contents of parent archive are in sync with the called ADE probe.

Input
Parameter Type Required Description

robot String Yes Nimbus address of the hub to which a parent ADE is
connected.

unset_package_master_sync

Disables the parent-child relationship between the called child ADE probe and its parent ADE probe. The
child ADE probe clears it rule list of all rules downloaded from the parent ADE probe. It does not make
any changes to its local archive.

refresh_rules

The called ADE probe attempts to contact its parent ADE probe and download the current rule set. This
is useful if there is ever a problem keeping the rules in sync. It does not do any package syncing.

	Overview
	About this Document
	Distsrv and ADE
	ADE v2.0

	Functional Comparison
	Callback Transition
	Automated Deployment Engine Callbacks
	Archive Management
	archive_backup(name,version)
	archive_delete(name,version)
	archive_list(name,version)
	archive_get_start(name,version,buffer_size)
	archive_get_next(id)
	archive_get_end(id)
	archive_put_start(name,version,file)
	archive_put_next(id)
	archive_put_end(id)

	Deploying Packages
	deploy_probe
	submit_job

	Retrieving Status
	get_job_ids
	get_status

	ADE Archive Sync
	add_package_sync_rule(name,version,rule_type)
	delete_package_sync_rule(name)
	list_rules(name)
	set_package_sync_master(name)
	unset_package_master_sync
	refresh_rules

